На пути к гиперзвуку: Гиперзвуковые самолеты

На гиперзвуковых скоростях самолет объединяет в себе авиационные и космические технологии

XXI век уже начал развертывать перед нами новые перспективы и ставить новые задачи. Самолеты теперь должны летать на гиперзвуковых скоростях, а для этого в их двигателях необходимо гармонично объединить черты авиационной и космической техники. В сверхзвуковом ПВРД — прямоточном воздушно-реактивном двигателе — не используется никаких вращающихся частей, при этом самолет, оснащенный таким двигателем, будет способен покрывать сотни километров за считаные минуты, сделает реальностью регулярные сверхскоростные трансконтинентальные перелеты и недорогие космические полеты.


В 2004 году, когда в самостоятельный полет отправился первый самолет с таким двигателем, поставленная цель стала уже почти реальностью. Во второй половине дня 27 марта неподалеку от побережья Калифорнии с летящего на высоте 12 км бомбардировщика В-52 стартовал принадлежащий NASA беспилотный аппарат Х-43А, установленный на крылатой ракете-носителе Pegasus («Пегас»). С помощью стартового ускорителя экспериментальный аппарат воспарил на высоту 29 км, где и отделился от ракеты-носителя. Далее заработал его собственный ПВРД, и хотя он проработал всего 10 секунд, на его тяге была достигнута немыслимая скорость в 7 Махов, то есть 8350 км/час.

Полученные в ходе этого эксперимента результаты помогли трезво оценить концепцию сверхзвукового летательного аппарата с воздушно-реактивным двигателем. Серия полетов, запланированных на ближайшие несколько лет, должна расширить объем уже имеющихся экспериментальных данных, так что не пройдет и десятилетия, как первые гиперзвуковые аппараты с ПВРД будут запущены в коммерческую эксплуатацию.

Сверхзвуковые ПВРД сделают возможным три категории гиперзвуковых летательных аппаратов — оружие (такое как крылатые ракеты), самолеты (к примеру, стратегические бомбардировщики и разведчики) и, наконец, космопланы — космические аппараты, способные взлетать и приземляться, как обычные авиалайнеры.

В Соединенных Штатах развитие прямоточных воздушно-реактивных двигателей имеет долгую историю. На основе теоретических разработок, начатых еще в сороковые годы, в конце пятидесятых американские ВВС, ВМФ и NASA вплотную подступили к экспериментальному этапу. Нынешний уровень проработки этой идеи базируется на множестве исследовательских программ с конструированием подобных двигателей на водородном и углеводородном топливе.

В ряду этих разработок особо следует отметить программу NASA «Национальный аэрокосмический самолет» (National Aerospace Plane — NASP). В 1986 году перед разработчиками была поставлена задача создать летательный аппарат, способный развивать скорость больше 15 Махов и при этом взлетающий и садящийся наподобие обычного самолета — на горизонтальную площадку. Программа была завершена в 1993 году, а вот созданная в ходе выполнения этой программы оригинальная конструкция двигателя, будучи значительно доработана в NASA, легла в основу силовой установки, использованной в мартовском полете Х-43А.

В 2001 году ВВС США совместно с моторостроительной компанией Pratt & Whitney провели наземные испытания первого неохлаждаемого ПВРД на углеводородном топливе, имитируя скорости 4,5 — 6,5 Махов. В 2003 году результатом этого сотрудничества явился двигатель из никелевых сплавов, охлаждаемый потоком собственного горючего марки JP7. Именно этот двигатель может в перспективе стать основой для будущих крылатых ракет, самолетов и космических аппаратов. В прошлом году были произведены наземные испытания ПВРД, разработанного целой группой организаций — DARPA (Агентство перспективных оборонных исследовательских проектов), ВМФ США, Boeing, Aerojet и университетом Джонса Хопкинса. Этот двигатель изготовлен в основном из никелевых сплавов, использует топливо JP10 и предназначен исключительно для гиперзвуковых крылатых ракет.


Что такое ГПВРД?

В традиционном ПВРД поступающий в воздухозаборник сверхзвуковой воздушный поток тормозится до дозвуковой скорости скачками уплотнения — ударными волнами, образуемыми за счет определенной геометрии воздухозаборника. Горючее впрыскивается в этот сжатый торможением дозвуковой поток, смесь сгорает, и горячие газы, проходя через регулируемое или нерегулируемое сопло, снова разгоняются до сверхзвуковых скоростей.

В гиперзвуковом ПВРД воздушный поток тормозится на входе в меньшей степени и остается сверхзвуковым в ходе всего процесса горения топлива. В этом случае отпадает нужда в регулируемых соплах, и работа двигателя оптимизирована для широкого диапазона чисел Маха. Современные двухрежимные гиперзвуковые ПВРД способны работать в режимах как дозвукового, так и сверхзвукового горения, обеспечивая плавный переход из одного режима в другой.

Концепция ГПВРД являет собой образец гармоничного сопряжения планера летательного аппарата и его движителя. В этой схеме двигатель занимает всю нижнюю поверхность летательного аппарата. Силовая установка состоит из семи основных элементов, пять из них относятся собственно к двигателю, а два — к фюзеляжу аппарата. Зона двигателя — это передняя и задняя части воздухозаборника, камера сгорания, сопло и система подачи горючего. К фюзеляжу можно отнести влияющие на работу двигателя нижние поверхности его носовой и хвостовой частей.

В скоростной системе нагнетания воздуха эффективно взаимодействуют носовая нижняя часть фюзеляжа и воздухозаборник. Они совместно захватывают и сжимают воздушный поток, подавая его в камеру сгорания. В отличие от обычных реактивных двигателей, в ГПВРД на сверхзвуковых и гиперзвуковых скоростях полета необходимое сжатие поступающего воздуха достигается без использования механического компрессора. Первоначальное сжатие создается нижней носовой частью фюзеляжа самолета, а воздухозаборник доводит его до необходимой степени сжатия.

Набегающий воздушный поток испытывает серию скачков уплотнения у носовой части самолета и на входе в воздухозаборник, его скорость снижается, при этом растут давление и температура. Принципиально важным компонентом ГПВРД выступает задняя часть воздухозаборника. В этой зоне сверхзвуковой входящий поток встречается с противодавлением, которое превосходит статическое давление воздуха на входе. Когда в результате процесса горения от стенки начинает отделяться пограничный слой, в зоне задней части воздухозаборника формируется серия скачков уплотнения, создавая своего рода «предкамеру» перед настоящей камерой сгорания. Наличие задней части воздухозаборника позволяет достичь в камере сгорания необходимых уровней теплоподвода и управлять растущим давлением так, чтобы не возникла ситуация, называемая «запиранием», при которой ударные волны препятствуют попаданию воздушного потока в заднюю часть воздухозаборника.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND