Демография: почему человечество растёт так быстро

Всегда ли наша планета сможет вмещать продолжающее численно расти человечество или будет достигнут катастрофический предел? Ответ на этот вопрос приходится искать на стыке естественнонаучных и гуманитарных дисциплин – ведь человек, оставаясь частью живой природы, существует также и в обособившейся сфере социальных законов.

В это не так легко поверить, но при всех перипетиях доисторических и исторических судеб человечества рост населения Земли с глубокой древности до 1960−1970-х годов описывается очень простым уравнением, которому соответствует столь же незатейливый график. График представляет собой гиперболу, а рост численности населения, следовательно, является гиперболическим. С помощью гиперболы можно легко вычислить теоретическую численность на любой период и сравнить с имеющимися оценками или статистическими данными. И всегда будет наблюдаться большое сходство.


Выявленные аналогии между некоторыми механизмами эволюции и механизмами демографического роста могут служить доказательством единства законов, управляющих развитием всего живого на земле: от примитивных организмов до Homo sapiens.

Сколько среди нас изобретателей?

Что такое гиперболический рост? Это рост с гораздо большим ускорением, чем обычный экспоненциальный. Если мы представим себе, что в аквариуме размножаются какие-то простейшие микроорганизмы вроде амеб и каждую минута каждая амеба делится пополам, то, соответственно, раз в минуту общее число этих организмов будет удваиваться. Это — пример экспоненциального роста. Гиперболический же рост отличается тем, что его ускорение по сравнению с экспоненциальным еще выше. Здесь мы имеем дело не просто с размножением в геометрической прогрессии, но и с дополнительным ускорением. Такое могло бы произойти, если бы в «сообществе» амеб действовали какие-то специфические положительные обратные связи.

Для объяснения природы гиперболического роста народонаселения предложено несколько моделей, наиболее убедительная из которых увязывает характер демографических процессов с уровнем технологического развития. Пока люди кормились от охоты, собирательства и рыболовства, то есть жили в условиях господства присваивающего хозяйства, несущая способность земли не могла поддерживать существование более 10 млн человек, ибо объем полезной и естественно доступной для человека биомассы ограничен. Превысить этот потолок удалось лишь с переходом к производящему хозяйству (земледелию и скотоводству), когда новые инструменты и методы позволили расширить количество доступной биомассы. Вследствие этих перемен образовался новый потолок численности человечества, просуществовавший до замены экстенсивных способов ведения сельского хозяйства интенсивными. Активно занимавшийся проблемами динамики народонаселения гарвардский профессор Майкл Кремер вывел закономерность, согласно которой для любого уровня технологического развития существует строго определенный уровень численности населения. При этом уровень технологического развития, разумеется, не является раз и навсегда заданной величиной. Динамика ее изменения, согласно Кремеру, напрямую зависит от численности населения. Для описания этой зависимости Кремер вывел дифференциальное уравнение, из которого следует, что абсолютные темпы технологического роста пропорциональны, с одной стороны, наличному на данный момент уровню технологического развития (чем шире технологическая база, тем больше изобретений можно сделать на ее основе), а с другой — численности населения (чем больше людей, тем больше среди них потенциальных изобретателей, новаторов и реформаторов). Получается система положительных обратных связей, которая и раскручивает маховик гиперболического роста населения в мире: технологический рост — рост потолка несущей способности Земли — демографический рост — больше потенциальных изобретателей — ускорение технологического роста — ускоренный рост несущей способности Земли — еще более быстрый демографический рост — ускоренный рост числа потенциальных изобретателей — еще более быстрый технологический рост — дальнейшее ускорение роста несущей способности Земли и т. д.

Плоды женской образованности

Действие всех этих механизмов привело к тому, что человечество на протяжении практически всей своей истории находилось в так называемой мальтузианской ловушке: весь технологический прирост, а также прирост производства продовольствия сводился на нет ростом населения. Едва повышались урожаи — сразу вырастала рождаемость, и возникал избыток лишних ртов. Испытав непродолжительный период сытости, человеческое сообщество вновь оказывалось на грани голода и нищеты. Такие периодические кризисы были очень свойственны аграрным обществам. В настоящее время есть математически обоснованная теория демографических циклов, которая показывает на примерах разных стран, что именно с этими циклами связаны вспышки голода, гражданские войны, межэтнические конфликты, эпидемии и т. д. В результате подобных катастрофических событий численность населения на какое-то время падала. После этого жизнь улучшалась, начинался новый рост населения, который однажды вновь упирался в предел несущей способности данной территории и снова приводил к событиям, итогом которых становилась депопуляция.

Неожиданное сходство

Можно ли считать механизм гиперболического роста народонаселения чем-то специфическим именно для развития Homo sapiens?
Оказывается схожие механизмы действовали в ходе эволюции, определяя динамику роста биоразнобразия. Сопоставлению эволюционных и социально-демографических механизмов посвящена книга А. В. Маркова и А.В Коротаева «Гиперболический рост в живой природе и обществе». Авторы – специалист по эволюционной биологии и социолог – приходят к выводу о том, что  развитии биосферы наблюдается  сходная по своей структуре с демографическими процессами система  связей, определяющая гиперболический рост биоразнообразия. Выглядит эта цепочка следующим образом:  больше таксонов – выше альфа-разнообразие (среднее число таксонов в сообществе) – сообщества становятся более сложными и устойчивыми – снижается скорость вымирания и (или) растет скорость появления (т.к. новые таксоны создают новые ниши и увеличивают суммарную «емкость среды») – разнообразие растет быстрее – больше таксонов – выше альфа-разнообразие и т.д.
Сходство механизмов проявляется и в некоторых существенных деталях. Например наблюдается  аналогия между «доступным экологическим пространством» (суммарным объемом доступных ниш) из биологических моделей и «несущей способностью земли/емкостью среды» в социально-демографических моделях. Новые таксоны, появление которых расширяет доступное экологическое пространство (создает новые ниши), могут быть сопоставлены с технологическими инновациями из социально-демографических моделей, увеличивающими несущую способность земли.


COM_SPPAGEBUILDER_NO_ITEMS_FOUND