Мыльная опера

Совсем недавно японские и итальянские математики рассказали о решении важной задачи из теории минимальных поверхностей — о поведении мыльной пленки на гибком каркасе. Как часто бывает в физике, эта теоретическая задача связана с гораздо более широким кругом явлений, чем простое возникновение мыльных пленок: от динамики молекул до гравитационных полей черных дыр. Мы предлагаем вам небольшой экскурс в одну из самых красивых задач математики — задачу Плато о минимальных поверхностях.


Историю этой задачи следует начать с работ бельгийского физика Жозефа Плато, кстати, изобретателя стробоскопа. В первой половине XIX века ученый занимался исследованием геометрии мыльных пузырей и сложных конструкций из мыльных пленок. Бельгиец пытался описать закономерности, которые возникают в мыльной пене, и сформулировал несколько законов, известных как «законы Плато». Например, оказалось, что средняя кривизна поверхности мыльной пленки одинакова во всех ее точках.


Мыльные пленки были выбраны ученым не случайно. Как известно, любая физическая система стремится минимизировать свою энергию. Шар, находящийся на склоне горы, покатится вниз, так как стремится уменьшить потенциальную энергию, электрический конденсатор постепенно разрядится и так далее. Точно так же и мыльная пленка попытается уменьшить свою энергию, если это возможно. Поскольку эта энергия запасается в поверхностном натяжении (чем больше площадь поверхности, тем больше ее энергия), то пленка стремится обладать геометрией с минимальной площадью поверхности, оптимизируя любые изгибы и стыки.

Это приводит на практике к необычным закономерностям. Например, оказалось, что в мыльной пене пленки «стыкуются» друг с другом строго тройками, под углом 120 градусов. На пересечении таких плоскостей формируются так называемые «границы Плато». Они, кстати, тоже пересекаются между собой — только четверками, под углом равным 109,5 градуса (это угол, под которым из центра тетраэдра видны его вершины). Как отметил Плато, любые другие конфигурации в мыльной пене неустойчивы.

Владимир Королёв

На самом деле проблема минимальной поверхности была сформулирована почти за век до экспериментов Плато французским математиком Жозефом-Луи Лагранжем. Ученый, создавший теорию вариационного исчисления, задался вопросом, как минимизировать площадь поверхности, заключенной в данном трехмерном контуре. Можно показать математически, что минимальные поверхности обладают определенным свойством: их средняя кривизна поверхности равна нулю. Это равносильно тому, что капиллярное давление в каждой точке пленки мыльной пленки уравновешено.

Оригинальная задача была поставлена в 1760-х годах. Вопрос, который поставил Лагранж, формулировался так: всегда ли можно построить минимальную поверхность для заданного контура?  С точки зрения математики, у этой задачи есть около десятка эквивалентных формулировок, одна из которых требует доказать существование решения дифференциального уравнения второго порядка для заданных граничных условий (трехмерного каркаса).

Очевидный способ доказать существование такой поверхности — найти прямое решение уравнения для всех возможных каркасов, то есть указать метод построения минимальной поверхности. Однако в математике есть и еще один способ доказательства таких утверждений — так называемые «чистые доказательства существования». Например, можно доказать, что у многочлена нечетной степени всегда есть хотя бы один действительный корень. Это непрерывная функция, которая при больших положительных «иксах» будет положительной, а на больших отрицательных «иксах» — отрицательной (или наоборот). Это означает, что в какой-то момент она должна будет пересечь ось абсцисс — эта точка и будет искомым корнем. Но при этом такое доказательство не указывает на способ поиска этого корня.


Жозеф Плато подошел к этой задаче с «другого конца», показав, как построить физически минимальную поверхность для заданного замкнутого контура. Для этого достаточно просто сделать этот каркас из проволоки и окунуть его в мыльный раствор. Но, разумеется, доказательством существования минимальных поверхностей работы физика послужить не могли. Зато в честь его работ вопрос, сформулированный Лагранжем, стал известен как «задача Плато». Интересно, что правила, которые сформулировал бельгиец, оказались верны для всех минимальных поверхностей. Это было подтверждено в 1970-х годах с помощью геометрической теории меры.

Владимир Королёв

COM_SPPAGEBUILDER_NO_ITEMS_FOUND